Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Identification of genes regulated by histone acetylation during root development in Populus trichocarpa.

Identifieur interne : 001823 ( Main/Exploration ); précédent : 001822; suivant : 001824

Identification of genes regulated by histone acetylation during root development in Populus trichocarpa.

Auteurs : Xujun Ma [République populaire de Chine] ; Chao Zhang [République populaire de Chine] ; Bing Zhang [République populaire de Chine] ; Chuanping Yang [République populaire de Chine] ; Shujuan Li [République populaire de Chine]

Source :

RBID : pubmed:26847576

Descripteurs français

English descriptors

Abstract

BACKGROUND

Histone deacetylases (HDACs) are key enzymes catalyzing the removal of acetyl groups from histones. HDACs act in concert with histone acetyltransferases (HATs) to regulate histone acetylation status, which modifies chromatin structure, affecting gene transcription and thus regulating multiple biological processes such as plant growth and development. Over a decade, certain HDACs in herbaceous plants have been deeply studied. However, functions of HDACs in woody plants are not well understood.

RESULTS

Histone deacetylase specific inhibitor trichostatin A (TSA) was used to investigate the role of HDACs in organogenesis of roots and root development in Populus trochocarpa. The adventitious roots were regenerated and grown on medium supplemented with 0, 1, and 2.5 μM TSA. TSA treatment delayed root regeneration and inhibited primary root growth. To examine the genes modified by TSA in the regenerated roots, tag-based digital gene expression (DGE) analysis was performed using Illumina HiSeqTM 2000. Approximately 4.5 million total clean tags were mapped per library. The distinct clean tags for the three libraries corresponding to 0, 1 and 2.5 μM TSA treatment were 166167, 143103 and 153507, from which 38.45%, 31.84% and 38.88% were mapped unambiguously to the unigene database, respectively. Most of the tags were expressed at similar levels, showing a < 5-fold difference after 1 μM and 2.5 μM TSA treatments and the maximum fold-change of the tag copy number was around 20. The expression levels of many genes in roots were significantly altered by TSA. A total of 36 genes were up-regulated and 1368 genes were down-regulated after 1 μM TSA treatment, while 166 genes were up-regulated and 397 genes were down-regulated after 2.5 μM TSA treatment. Gene ontology (GO) and pathway analyses indicated that the differentially expressed genes were related to many kinds of molecular functions and biological processes. The genes encoding key enzymes catalyzing gibberellin biosynthesis were significantly down-regulated in the roots exposed to 2.5 μM TSA and their expression changes were validated by using real-time PCR.

CONCLUSIONS

HDACs were required for de novo organogenesis and normal growth of populus roots. DGE data provides the gene profiles in roots probably regulated by histone acetylation during root growth and development, which will lead to a better understanding of the mechanism controlling root development.


DOI: 10.1186/s12864-016-2407-x
PubMed: 26847576
PubMed Central: PMC4743431


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Identification of genes regulated by histone acetylation during root development in Populus trichocarpa.</title>
<author>
<name sortKey="Ma, Xujun" sort="Ma, Xujun" uniqKey="Ma X" first="Xujun" last="Ma">Xujun Ma</name>
<affiliation wicri:level="1">
<nlm:affiliation>State Key Laboratory of Tree Genetics and Breeding (Northeast Forestry University), Northeast Forestry University, Harbin, 150040, China. mxj3000@sina.com.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>State Key Laboratory of Tree Genetics and Breeding (Northeast Forestry University), Northeast Forestry University, Harbin, 150040</wicri:regionArea>
<wicri:noRegion>150040</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Zhang, Chao" sort="Zhang, Chao" uniqKey="Zhang C" first="Chao" last="Zhang">Chao Zhang</name>
<affiliation wicri:level="1">
<nlm:affiliation>State Key Laboratory of Tree Genetics and Breeding (Northeast Forestry University), Northeast Forestry University, Harbin, 150040, China. fredzhang1990@163.com.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>State Key Laboratory of Tree Genetics and Breeding (Northeast Forestry University), Northeast Forestry University, Harbin, 150040</wicri:regionArea>
<wicri:noRegion>150040</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Zhang, Bing" sort="Zhang, Bing" uniqKey="Zhang B" first="Bing" last="Zhang">Bing Zhang</name>
<affiliation wicri:level="1">
<nlm:affiliation>State Key Laboratory of Tree Genetics and Breeding (Northeast Forestry University), Northeast Forestry University, Harbin, 150040, China. 903253543@qq.com.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>State Key Laboratory of Tree Genetics and Breeding (Northeast Forestry University), Northeast Forestry University, Harbin, 150040</wicri:regionArea>
<wicri:noRegion>150040</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Yang, Chuanping" sort="Yang, Chuanping" uniqKey="Yang C" first="Chuanping" last="Yang">Chuanping Yang</name>
<affiliation wicri:level="1">
<nlm:affiliation>State Key Laboratory of Tree Genetics and Breeding (Northeast Forestry University), Northeast Forestry University, Harbin, 150040, China. cpyang_nefu@163.com.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>State Key Laboratory of Tree Genetics and Breeding (Northeast Forestry University), Northeast Forestry University, Harbin, 150040</wicri:regionArea>
<wicri:noRegion>150040</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Li, Shujuan" sort="Li, Shujuan" uniqKey="Li S" first="Shujuan" last="Li">Shujuan Li</name>
<affiliation wicri:level="1">
<nlm:affiliation>State Key Laboratory of Tree Genetics and Breeding (Northeast Forestry University), Northeast Forestry University, Harbin, 150040, China. lishujuan@126.com.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>State Key Laboratory of Tree Genetics and Breeding (Northeast Forestry University), Northeast Forestry University, Harbin, 150040</wicri:regionArea>
<wicri:noRegion>150040</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2016">2016</date>
<idno type="RBID">pubmed:26847576</idno>
<idno type="pmid">26847576</idno>
<idno type="doi">10.1186/s12864-016-2407-x</idno>
<idno type="pmc">PMC4743431</idno>
<idno type="wicri:Area/Main/Corpus">001938</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">001938</idno>
<idno type="wicri:Area/Main/Curation">001938</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">001938</idno>
<idno type="wicri:Area/Main/Exploration">001938</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Identification of genes regulated by histone acetylation during root development in Populus trichocarpa.</title>
<author>
<name sortKey="Ma, Xujun" sort="Ma, Xujun" uniqKey="Ma X" first="Xujun" last="Ma">Xujun Ma</name>
<affiliation wicri:level="1">
<nlm:affiliation>State Key Laboratory of Tree Genetics and Breeding (Northeast Forestry University), Northeast Forestry University, Harbin, 150040, China. mxj3000@sina.com.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>State Key Laboratory of Tree Genetics and Breeding (Northeast Forestry University), Northeast Forestry University, Harbin, 150040</wicri:regionArea>
<wicri:noRegion>150040</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Zhang, Chao" sort="Zhang, Chao" uniqKey="Zhang C" first="Chao" last="Zhang">Chao Zhang</name>
<affiliation wicri:level="1">
<nlm:affiliation>State Key Laboratory of Tree Genetics and Breeding (Northeast Forestry University), Northeast Forestry University, Harbin, 150040, China. fredzhang1990@163.com.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>State Key Laboratory of Tree Genetics and Breeding (Northeast Forestry University), Northeast Forestry University, Harbin, 150040</wicri:regionArea>
<wicri:noRegion>150040</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Zhang, Bing" sort="Zhang, Bing" uniqKey="Zhang B" first="Bing" last="Zhang">Bing Zhang</name>
<affiliation wicri:level="1">
<nlm:affiliation>State Key Laboratory of Tree Genetics and Breeding (Northeast Forestry University), Northeast Forestry University, Harbin, 150040, China. 903253543@qq.com.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>State Key Laboratory of Tree Genetics and Breeding (Northeast Forestry University), Northeast Forestry University, Harbin, 150040</wicri:regionArea>
<wicri:noRegion>150040</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Yang, Chuanping" sort="Yang, Chuanping" uniqKey="Yang C" first="Chuanping" last="Yang">Chuanping Yang</name>
<affiliation wicri:level="1">
<nlm:affiliation>State Key Laboratory of Tree Genetics and Breeding (Northeast Forestry University), Northeast Forestry University, Harbin, 150040, China. cpyang_nefu@163.com.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>State Key Laboratory of Tree Genetics and Breeding (Northeast Forestry University), Northeast Forestry University, Harbin, 150040</wicri:regionArea>
<wicri:noRegion>150040</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Li, Shujuan" sort="Li, Shujuan" uniqKey="Li S" first="Shujuan" last="Li">Shujuan Li</name>
<affiliation wicri:level="1">
<nlm:affiliation>State Key Laboratory of Tree Genetics and Breeding (Northeast Forestry University), Northeast Forestry University, Harbin, 150040, China. lishujuan@126.com.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>State Key Laboratory of Tree Genetics and Breeding (Northeast Forestry University), Northeast Forestry University, Harbin, 150040</wicri:regionArea>
<wicri:noRegion>150040</wicri:noRegion>
</affiliation>
</author>
</analytic>
<series>
<title level="j">BMC genomics</title>
<idno type="eISSN">1471-2164</idno>
<imprint>
<date when="2016" type="published">2016</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Acetylation (MeSH)</term>
<term>Computational Biology (methods)</term>
<term>Gene Expression Profiling (MeSH)</term>
<term>Gene Expression Regulation, Plant (MeSH)</term>
<term>Genes, Plant (MeSH)</term>
<term>Gibberellins (metabolism)</term>
<term>Histone Deacetylases (metabolism)</term>
<term>Histones (metabolism)</term>
<term>Hydroxamic Acids (metabolism)</term>
<term>Phenotype (MeSH)</term>
<term>Plant Development (genetics)</term>
<term>Plant Roots (genetics)</term>
<term>Plant Roots (growth & development)</term>
<term>Plant Roots (metabolism)</term>
<term>Populus (genetics)</term>
<term>Populus (metabolism)</term>
<term>Regeneration (genetics)</term>
<term>Reproducibility of Results (MeSH)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Acides hydroxamiques (métabolisme)</term>
<term>Acétylation (MeSH)</term>
<term>Analyse de profil d'expression de gènes (MeSH)</term>
<term>Biologie informatique (méthodes)</term>
<term>Développement des plantes (génétique)</term>
<term>Gibbérellines (métabolisme)</term>
<term>Gènes de plante (MeSH)</term>
<term>Histone (métabolisme)</term>
<term>Histone deacetylases (métabolisme)</term>
<term>Phénotype (MeSH)</term>
<term>Populus (génétique)</term>
<term>Populus (métabolisme)</term>
<term>Racines de plante (croissance et développement)</term>
<term>Racines de plante (génétique)</term>
<term>Racines de plante (métabolisme)</term>
<term>Reproductibilité des résultats (MeSH)</term>
<term>Régulation de l'expression des gènes végétaux (MeSH)</term>
<term>Régénération (génétique)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Gibberellins</term>
<term>Histone Deacetylases</term>
<term>Histones</term>
<term>Hydroxamic Acids</term>
</keywords>
<keywords scheme="MESH" qualifier="croissance et développement" xml:lang="fr">
<term>Racines de plante</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Plant Development</term>
<term>Plant Roots</term>
<term>Populus</term>
<term>Regeneration</term>
</keywords>
<keywords scheme="MESH" qualifier="growth & development" xml:lang="en">
<term>Plant Roots</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Développement des plantes</term>
<term>Populus</term>
<term>Racines de plante</term>
<term>Régénération</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Plant Roots</term>
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="methods" xml:lang="en">
<term>Computational Biology</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Acides hydroxamiques</term>
<term>Gibbérellines</term>
<term>Histone</term>
<term>Histone deacetylases</term>
<term>Populus</term>
<term>Racines de plante</term>
</keywords>
<keywords scheme="MESH" qualifier="méthodes" xml:lang="fr">
<term>Biologie informatique</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Acetylation</term>
<term>Gene Expression Profiling</term>
<term>Gene Expression Regulation, Plant</term>
<term>Genes, Plant</term>
<term>Phenotype</term>
<term>Reproducibility of Results</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Acétylation</term>
<term>Analyse de profil d'expression de gènes</term>
<term>Gènes de plante</term>
<term>Phénotype</term>
<term>Reproductibilité des résultats</term>
<term>Régulation de l'expression des gènes végétaux</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<p>
<b>BACKGROUND</b>
</p>
<p>Histone deacetylases (HDACs) are key enzymes catalyzing the removal of acetyl groups from histones. HDACs act in concert with histone acetyltransferases (HATs) to regulate histone acetylation status, which modifies chromatin structure, affecting gene transcription and thus regulating multiple biological processes such as plant growth and development. Over a decade, certain HDACs in herbaceous plants have been deeply studied. However, functions of HDACs in woody plants are not well understood.</p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>RESULTS</b>
</p>
<p>Histone deacetylase specific inhibitor trichostatin A (TSA) was used to investigate the role of HDACs in organogenesis of roots and root development in Populus trochocarpa. The adventitious roots were regenerated and grown on medium supplemented with 0, 1, and 2.5 μM TSA. TSA treatment delayed root regeneration and inhibited primary root growth. To examine the genes modified by TSA in the regenerated roots, tag-based digital gene expression (DGE) analysis was performed using Illumina HiSeqTM 2000. Approximately 4.5 million total clean tags were mapped per library. The distinct clean tags for the three libraries corresponding to 0, 1 and 2.5 μM TSA treatment were 166167, 143103 and 153507, from which 38.45%, 31.84% and 38.88% were mapped unambiguously to the unigene database, respectively. Most of the tags were expressed at similar levels, showing a < 5-fold difference after 1 μM and 2.5 μM TSA treatments and the maximum fold-change of the tag copy number was around 20. The expression levels of many genes in roots were significantly altered by TSA. A total of 36 genes were up-regulated and 1368 genes were down-regulated after 1 μM TSA treatment, while 166 genes were up-regulated and 397 genes were down-regulated after 2.5 μM TSA treatment. Gene ontology (GO) and pathway analyses indicated that the differentially expressed genes were related to many kinds of molecular functions and biological processes. The genes encoding key enzymes catalyzing gibberellin biosynthesis were significantly down-regulated in the roots exposed to 2.5 μM TSA and their expression changes were validated by using real-time PCR.</p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>CONCLUSIONS</b>
</p>
<p>HDACs were required for de novo organogenesis and normal growth of populus roots. DGE data provides the gene profiles in roots probably regulated by histone acetylation during root growth and development, which will lead to a better understanding of the mechanism controlling root development.</p>
</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">26847576</PMID>
<DateCompleted>
<Year>2016</Year>
<Month>10</Month>
<Day>20</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Electronic">
<Journal>
<ISSN IssnType="Electronic">1471-2164</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>17</Volume>
<PubDate>
<Year>2016</Year>
<Month>Feb</Month>
<Day>04</Day>
</PubDate>
</JournalIssue>
<Title>BMC genomics</Title>
<ISOAbbreviation>BMC Genomics</ISOAbbreviation>
</Journal>
<ArticleTitle>Identification of genes regulated by histone acetylation during root development in Populus trichocarpa.</ArticleTitle>
<Pagination>
<MedlinePgn>96</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1186/s12864-016-2407-x</ELocationID>
<Abstract>
<AbstractText Label="BACKGROUND" NlmCategory="BACKGROUND">Histone deacetylases (HDACs) are key enzymes catalyzing the removal of acetyl groups from histones. HDACs act in concert with histone acetyltransferases (HATs) to regulate histone acetylation status, which modifies chromatin structure, affecting gene transcription and thus regulating multiple biological processes such as plant growth and development. Over a decade, certain HDACs in herbaceous plants have been deeply studied. However, functions of HDACs in woody plants are not well understood.</AbstractText>
<AbstractText Label="RESULTS" NlmCategory="RESULTS">Histone deacetylase specific inhibitor trichostatin A (TSA) was used to investigate the role of HDACs in organogenesis of roots and root development in Populus trochocarpa. The adventitious roots were regenerated and grown on medium supplemented with 0, 1, and 2.5 μM TSA. TSA treatment delayed root regeneration and inhibited primary root growth. To examine the genes modified by TSA in the regenerated roots, tag-based digital gene expression (DGE) analysis was performed using Illumina HiSeqTM 2000. Approximately 4.5 million total clean tags were mapped per library. The distinct clean tags for the three libraries corresponding to 0, 1 and 2.5 μM TSA treatment were 166167, 143103 and 153507, from which 38.45%, 31.84% and 38.88% were mapped unambiguously to the unigene database, respectively. Most of the tags were expressed at similar levels, showing a < 5-fold difference after 1 μM and 2.5 μM TSA treatments and the maximum fold-change of the tag copy number was around 20. The expression levels of many genes in roots were significantly altered by TSA. A total of 36 genes were up-regulated and 1368 genes were down-regulated after 1 μM TSA treatment, while 166 genes were up-regulated and 397 genes were down-regulated after 2.5 μM TSA treatment. Gene ontology (GO) and pathway analyses indicated that the differentially expressed genes were related to many kinds of molecular functions and biological processes. The genes encoding key enzymes catalyzing gibberellin biosynthesis were significantly down-regulated in the roots exposed to 2.5 μM TSA and their expression changes were validated by using real-time PCR.</AbstractText>
<AbstractText Label="CONCLUSIONS" NlmCategory="CONCLUSIONS">HDACs were required for de novo organogenesis and normal growth of populus roots. DGE data provides the gene profiles in roots probably regulated by histone acetylation during root growth and development, which will lead to a better understanding of the mechanism controlling root development.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Ma</LastName>
<ForeName>Xujun</ForeName>
<Initials>X</Initials>
<AffiliationInfo>
<Affiliation>State Key Laboratory of Tree Genetics and Breeding (Northeast Forestry University), Northeast Forestry University, Harbin, 150040, China. mxj3000@sina.com.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Zhang</LastName>
<ForeName>Chao</ForeName>
<Initials>C</Initials>
<AffiliationInfo>
<Affiliation>State Key Laboratory of Tree Genetics and Breeding (Northeast Forestry University), Northeast Forestry University, Harbin, 150040, China. fredzhang1990@163.com.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Zhang</LastName>
<ForeName>Bing</ForeName>
<Initials>B</Initials>
<AffiliationInfo>
<Affiliation>State Key Laboratory of Tree Genetics and Breeding (Northeast Forestry University), Northeast Forestry University, Harbin, 150040, China. 903253543@qq.com.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Yang</LastName>
<ForeName>Chuanping</ForeName>
<Initials>C</Initials>
<AffiliationInfo>
<Affiliation>State Key Laboratory of Tree Genetics and Breeding (Northeast Forestry University), Northeast Forestry University, Harbin, 150040, China. cpyang_nefu@163.com.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Li</LastName>
<ForeName>Shujuan</ForeName>
<Initials>S</Initials>
<AffiliationInfo>
<Affiliation>State Key Laboratory of Tree Genetics and Breeding (Northeast Forestry University), Northeast Forestry University, Harbin, 150040, China. lishujuan@126.com.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2016</Year>
<Month>02</Month>
<Day>04</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>BMC Genomics</MedlineTA>
<NlmUniqueID>100965258</NlmUniqueID>
<ISSNLinking>1471-2164</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D005875">Gibberellins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D006657">Histones</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D006877">Hydroxamic Acids</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>3X2S926L3Z</RegistryNumber>
<NameOfSubstance UI="C012589">trichostatin A</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 3.5.1.98</RegistryNumber>
<NameOfSubstance UI="D006655">Histone Deacetylases</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000107" MajorTopicYN="N">Acetylation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D019295" MajorTopicYN="N">Computational Biology</DescriptorName>
<QualifierName UI="Q000379" MajorTopicYN="N">methods</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020869" MajorTopicYN="N">Gene Expression Profiling</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018506" MajorTopicYN="Y">Gene Expression Regulation, Plant</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017343" MajorTopicYN="Y">Genes, Plant</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005875" MajorTopicYN="N">Gibberellins</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006655" MajorTopicYN="N">Histone Deacetylases</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006657" MajorTopicYN="N">Histones</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006877" MajorTopicYN="N">Hydroxamic Acids</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010641" MajorTopicYN="N">Phenotype</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D063245" MajorTopicYN="N">Plant Development</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018517" MajorTopicYN="N">Plant Roots</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000254" MajorTopicYN="N">growth & development</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D032107" MajorTopicYN="N">Populus</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012038" MajorTopicYN="N">Regeneration</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015203" MajorTopicYN="N">Reproducibility of Results</DescriptorName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2015</Year>
<Month>08</Month>
<Day>10</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2016</Year>
<Month>01</Month>
<Day>20</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2016</Year>
<Month>2</Month>
<Day>6</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2016</Year>
<Month>2</Month>
<Day>6</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2016</Year>
<Month>10</Month>
<Day>21</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">26847576</ArticleId>
<ArticleId IdType="doi">10.1186/s12864-016-2407-x</ArticleId>
<ArticleId IdType="pii">10.1186/s12864-016-2407-x</ArticleId>
<ArticleId IdType="pmc">PMC4743431</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Nat Cell Biol. 2008 May;10(5):625-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18425113</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 1995 Feb;7(2):211-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7704045</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Molecules. 2010;15(12):9057-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21150825</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Dev Biol. 1994 Dec;166(2):740-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7813791</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Res. 2009 Oct;19(10):1825-35</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19541910</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2001 Jun;126(2):643-55</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11402194</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2005 Jul;43(1):118-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15960621</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Phytochemistry. 2000 Sep;55(1):11-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11021638</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2006 Nov;142(3):820-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16980566</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2009 Sep;59(5):764-76</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19453457</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Genomics. 2013;14:233</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23570526</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Physiol. 2000 Aug;41(8):932-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11038053</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Genomics. 2013;14:548</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23941306</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2012 Oct;160(2):749-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22837358</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2008 Oct 24;322(5901):594-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18948541</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Rep. 2013 Apr;32(4):465-78</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23408190</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2009;60(3):751-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19129166</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2007 Jan;19(1):118-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17259263</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2012 May;63(8):3297-306</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22368268</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2000 May 26;101(5):555-67</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10850497</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2003 Feb;33(3):531-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12581311</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2001 Feb;125(2):627-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11161020</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2005 Feb;17(2):444-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15659631</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2008 Jan;36(Database issue):D480-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18077471</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Rep. 2013 Oct;32(10):1625-36</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23820978</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2010 Mar;22(3):623-39</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20354195</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2005 Oct 4;102(40):14469-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16176989</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1964 May;51:786-94</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14172992</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Genomics. 2013;14:359</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23718132</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2006 Sep 15;313(5793):1596-604</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16973872</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ann Bot. 2002 Dec;90(6):681-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12451023</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2002 Mar;14(3):589-97</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11910006</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Genomics. 2015;16:181</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25887520</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Plant Biol. 2009;9:37</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19327164</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2013 Nov 21;155(5):1190-1190.e1</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24267898</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2011;6(7):e22132</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21811564</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2005 Apr;17(4):1196-204</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15749761</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Mol Biol. 1988 Nov;11(6):857-66</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24272635</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Tree Physiol. 2006 May;26(5):595-604</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16452073</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2006 Nov;48(3):380-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17010112</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Genomics. 2013;14:532</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23915275</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2014 Sep;65(17):4975-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24948679</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Plant Biol. 2012;63:563-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22404466</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Development. 1996 Apr;122(4):1253-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8620852</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2005 Oct 11;102(41):14489-96</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16150713</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2011 Jul 26;108(30):12539-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21737749</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Integr Plant Biol. 2008 Jul;50(7):875-85</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18713398</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2010 Feb 9;107(6):2705-10</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20133796</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 1998 Dec;10(12):2115-26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9836749</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Res. 1997 Oct;7(10):986-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9331369</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Genomics. 2013;14:929</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24373586</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2008 Dec;36(21):e141</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18927111</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cold Spring Harb Perspect Biol. 2010 Mar;2(3):a001552</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20300209</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem Biophys Res Commun. 2007 May 18;356(4):843-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17399684</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 1996 Sep;10(3):393-402</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8811855</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Physiol Plant. 2009 Jul;136(3):358-68</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19470089</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>République populaire de Chine</li>
</country>
</list>
<tree>
<country name="République populaire de Chine">
<noRegion>
<name sortKey="Ma, Xujun" sort="Ma, Xujun" uniqKey="Ma X" first="Xujun" last="Ma">Xujun Ma</name>
</noRegion>
<name sortKey="Li, Shujuan" sort="Li, Shujuan" uniqKey="Li S" first="Shujuan" last="Li">Shujuan Li</name>
<name sortKey="Yang, Chuanping" sort="Yang, Chuanping" uniqKey="Yang C" first="Chuanping" last="Yang">Chuanping Yang</name>
<name sortKey="Zhang, Bing" sort="Zhang, Bing" uniqKey="Zhang B" first="Bing" last="Zhang">Bing Zhang</name>
<name sortKey="Zhang, Chao" sort="Zhang, Chao" uniqKey="Zhang C" first="Chao" last="Zhang">Chao Zhang</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001823 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 001823 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:26847576
   |texte=   Identification of genes regulated by histone acetylation during root development in Populus trichocarpa.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:26847576" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020